65 research outputs found

    Radio-echo soundings on Icelandic temperate glaciers: history of techniques and findings

    Get PDF
    Publisher's version (útgefin grein)Since the mid-1970s radio-echo soundings have been conducted on Iceland's temperate glaciers. Since then, low-frequency radar technology has furthered the study of most of the island's ice caps. Their masses and volumes have been quantified and detailed subglacial topographic maps produced which demarcate glacial drainage basins and identify subglacial lakes and volcanoes. Even internal tephra layers have been charted. The resulting data have been used to force and validate models of past and future glacier evolution. Many practical applications in glacier hydrology have come into being, including hydropower management, road and bridge planning and the prediction of catastrophic flood paths from subglacial eruption sites. Finally, emerging landscapes can now be foreseen in places where glaciers may soon disappear. These achievements would not have been possible without the advances in RES technology.The work was supported by The National Power Company of Iceland, The Road and Coastal Administration of Iceland, The Parliament Financial Committee and the Research Fund of Eggert V. Briem. Special thanks to our colleague Eyjólfur Magnússon who processed the digital RES and for fruitful discussion on the paper content. We are grateful to Philip Vogler for improving the English text of the manuscript.Peer Reviewe

    A Hierarchical Spatio-Temporal Statistical Model Motivated by Glaciology

    Get PDF
    In this paper, we extend and analyze a Bayesian hierarchical spatio-temporal model for physical systems. A novelty is to model the discrepancy between the output of a computer simulator for a physical process and the actual process values with a multivariate random walk. For computational efficiency, linear algebra for bandwidth limited matrices is utilized, and first-order emulator inference allows for the fast emulation of a numerical partial differential equation (PDE) solver. A test scenario from a physical system motivated by glaciology is used to examine the speed and accuracy of the computational methods used, in addition to the viability of modeling assumptions. We conclude by discussing how the model and associated methodology can be applied in other physical contexts besides glaciology.Comment: Revision accepted for publication by the Journal of Agricultural, Biological, and Environmental Statistic

    Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland

    Get PDF
    In this paper we describe how recent high-resolution digital elevation models (DEMs) can be used to extract glacier surface DEMs from old aerial photographs and to evaluate the uncertainty of the mass balance record derived from the DEMs. We present a case study for Drangajokull ice cap, NW Iceland. This ice cap covered an area of 144 km(2) when it was surveyed with airborne lidar in 2011. Aerial photographs spanning all or most of the ice cap are available from survey flights in 1946, 1960, 1975, 1985, 1994 and 2005. All ground control points used to constrain the orientation of the aerial photographs were obtained from the high-resolution lidar DEM. The lidar DEM was also used to estimate errors of the extracted photogrammetric DEMs in ice-and snow-free areas, at nunataks and outside the glacier margin. The derived errors of each DEM were used to constrain a spherical semivariogram model, which along with the derived errors in ice-and snow-free areas were used as inputs into 1000 sequential Gaussian simulations (SGSims). The simulations were used to estimate the possible bias in the entire glaciated part of the DEM and the 95% confidence level of this bias. This results in bias correction varying in magnitude between 0.03m (in 1975) and 1.66m (in 1946) and uncertainty values between +/- 0.21m (in 2005) and +/- 1.58m (in 1946). Error estimation methods based on more simple proxies would typically yield 2-4 times larger error estimates. The aerial photographs used were acquired between late June and early October. An additional seasonal bias correction was therefore estimated using a degree-day model to obtain the volume change between the start of 2 glaciological years (1 October). This correction was largest for the 1960 DEM, corresponding to an average elevation change of -3.5m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs. The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume changes caused by uncertainties of the SGSim bias correction, the seasonal bias correction and the interpolation of glacier surface where data are lacking. The record shows a glacier-wide mass balance rate of (B) over dot = -0.26 +/- 0.04m w.e.a(-1) for the entire study period (1946-2011). We observe significant decadal variability including periods of mass gain, peaking in 1985-1994 with (B) over dot = -0.27 +/- 0.11m w.e.a(-1). There is a striking difference when (B) over dot is calculated separately for the western and eastern halves of Drangajokull, with a reduction of eastern part on average similar to 3 times faster than the western part. Our study emphasizes the need for applying rigorous geostatistical methods for obtaining uncertainty estimates of geodetic mass balance, the importance of seasonal corrections of DEMs from glaciers with high mass turnover and the risk of extrapolating mass balance record from one glacier to another even over short distances.This work was carried out within SVALI funded by the Nordic Top-level Research Initiative (TRI) and is SVALI publication number 70. It was also financially supported by alpS GmbH. This work is a contribution to the Rannis grant of excellence project, ANATILS. We thank the National Land Survey of Iceland and Loftmyndir ehf. for acquisition and scanning of the aerial photographs. This study used the recent lidar mapping of the glaciers in Iceland that was funded by the Icelandic Research Fund, the Landsvirkjun Research Fund, the Icelandic Road Administration, the Reykjavik Energy Environmental and Energy Research Fund, the Klima- og Luftgruppen (KoL) research fund of the Nordic Council of Ministers, the Vatnajokull National Park, the organization Friends of Vatnajokull, the National Land Survey of Iceland and the Icelandic Meteorological Office.Peer Reviewe

    Early melt season velocity fields of Langjökull and Hofsjökull, central Iceland

    Get PDF
    We infer the horizontal velocity fields of the ice caps Langjökull and Hofsjökull, central Iceland, using repeat-pass interferometric synthetic aperture radar (InSAR). NASA’s uninhabited aerial vehicle synthetic aperture radar (UAVSAR) acquired airborne InSAR data from multiple vantage points during the early melt season in June 2012. We develop a Bayesian approach for inferring three-dimensional velocity fields from multiple InSAR acquisitions. The horizontal components generally agree with available GPS measurements wherever ice motion is well constrained by InSAR observations. We provide evidence that changes in volumetric moisture content near the glacier surface induce phase offsets that obfuscate the vertical component of the surface velocity fields, an effect that could manifest itself on any glacier that experiences surface melt. Spatial patterns in the InSAR-derived horizontal speeds are broadly consistent with the results of a simple viscous flow model, and the directionality of the InSAR-derived horizontal flow field is nearly everywhere consistent with the ice surface gradient. Significant differences between the InSAR-derived horizontal speed and the speed predicted by the viscous flow model suggest that basal slip accounts for more than half the observed outlet glacier flow

    Elevation change, mass balance, dynamics and surging of Langjökull, Iceland from 1997 to 2007

    Get PDF
    ABSTRACTGlaciers and ice caps around the world are changing quickly, with surge-type behaviour superimposed upon climatic forcing. Here, we study Iceland's second largest ice cap, Langjökull, which has both surge- and non-surge-type outlets. By differencing elevation change with surface mass balance, we estimate the contribution of ice dynamics to elevation change. We use DEMs, in situ stake measurements, regional reanalyses and a mass-balance model to calculate the vertical ice velocity. Thus, we not only compare the geodetic, modelled and glaciological mass balances, but also map spatial variations in glacier dynamics. Maps of emergence and submergence velocity successfully highlight the 1998 surge and subsequent quiescence of one of Langjökull's outlets by visualizing both source and sink areas. In addition to observing the extent of traditional surge behaviour (i.e. mass transfer from the accumulation area to the ablation area followed by recharge of the source area), we see peripheral areas where the surge impinged upon an adjacent ridge and subsequently retreated. While mass balances are largely in good agreement, discrepancies between modelled and geodetic mass balance may be explained by inaccurate estimates of precipitation, saturated adiabatic lapse rate or degree-day factors. Nevertheless, the study was ultimately able to investigate dynamic surge behaviour in the absence of in situ measurements during the surge.In situ mass balance survey is a joint effort of the Glaciology Group, Institute of Earth Sciences, University of Iceland and the National Power Company (Landsvirkjun). We thank Philippe Crochet and Tómas Jóhannesson from the Icelandic Meteorological Office for providing the gridded climate data and for useful discussions about the climatology of Langjökull. The 2007 lidar data were collected by the UK Natural Environment Research Council Airborne Research and Survey Facility (Grant IPY 07-08). Additional funding was provided by the United States National Science Foundation (Grant No. DGE-1038596), St Catharine’s, St John’s and Trinity Colleges and the University of Cambridge B.B. Roberts and Scandinavian Studies Funds. We thank Cameron Rye for initial help coding the mass balance model.This is the author accepted manuscript. The final version is available from Cambridge University Press via https://doi.org/10.1017/jog.2016.5

    A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions

    Get PDF
    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatiotemporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error-correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.The Icelandic Research Fund (RANNIS) is thanked for funding this research.Peer Reviewe

    Elevation Change, Mass Balance, Dynamics, and Surging of Langjökull, Iceland from 1997 to 2007

    Get PDF
    Glaciers and ice caps around the world are changing quickly, with surge-type behaviour superimposed upon climatic forcing. Here, we study Iceland’s second largest ice cap, Langjökull, which has both surge- and non-surge-type outlets. By differencing elevation change with surface mass balance, we estimate the contribution of ice dynamics to elevation change. We use DEMs, in situ stake measurements, regional reanalyses, and a mass balance model to calculate the vertical ice velocity. Thus, we not only compare the geodetic, modelled, and glaciological mass balances, but also map spatial variations in glacier dynamics. Maps of emergence and submergence velocity successfully highlight the 1998 surge and subsequent quiescence of one of Langjökull’s outlets by visualizing both source and sink areas. In addition to observing the extent of traditional surge behaviour (i.e., mass transfer from the accumulation area to the ablation area followed by recharge of the source area), we see peripheral areas where the surge impinged upon an adjacent ridge and subsequently retreated. While mass balances are largely in good agreement, discrepancies between modelled and geodetic mass balance may be explained by inaccurate estimates of precipitation, saturated adiabatic lapse rate, or degree day factors. Nevertheless, the study was ultimately able to investigate dynamic surge behaviour in the absence of in situ measurements during the surge.In situ mass balance survey is a joint effort of the Glaciology Group, Institute of Earth Sciences, University of Iceland and the National Power Company (Landsvirkjun). We thank Philippe Crochet and Tómas Jóhannesson from the Icelandic Meteorological Office for providing the gridded climate data and for useful discussions about the climatology of Langjökull. The 2007 lidar data were collected by the UK Natural Environment Research Council Airborne Research and Survey Facility (Grant IPY 07-08). Additional funding was provided by the United States National Science Foundation (Grant No. DGE-1038596), St Catharine’s, St John’s and Trinity Colleges and the University of Cambridge B.B. Roberts and Scandinavian Studies Funds. We thank Cameron Rye for initial help coding the mass balance model.This is the author accepted manuscript. The final version is available from Cambridge University Press via https://doi.org/10.1017/jog.2016.5

    Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland

    Get PDF
    Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ∼  1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m−2. At the station located higher on the glacier ( ∼  1525 m a.s.l.), the model produced nine dust events, with one single event causing  ∼  5 g m−2 of dust deposition and a total deposition of  ∼  10 g m−2 yr−1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.The study described in this manuscript was supported by NordForsk as part of the two Nordic Centres of Excellence Cryosphere-Atmosphere Interactions in a Changing Arctic climate (CRAICC), and eScience Tools for Investigating Climate Change (eSTICC). Part of this work was supported by the Centre of Excellence in Atmospheric Science funded by the Finnish Academy of Sciences Excellence (project no. 272041), by the Finnish Academy of Sciences project A4 (contract 254195). Data from in situ mass balance surveys and on glacier automatic weather stations are from joint projects of the National Power Company and the Glaciology group of the Institute of Earth Science, University of Iceland. C. Groot Zwaaftink was also funded by the Swiss National Science Foundation SNF (155294), and Louise Steffensen-Schmidt, Finnur Palsson and Sverrir Gudmunds-son by the Icelandic Research Fund (project SAMAR) and the National Power Company of Iceland. Olafur Arnalds was in part funded by Icelandic Research Fund (grant no. 152248-051)Peer Reviewe
    corecore